Fiche d'exercices – Correction

LES RÉPONSES AUX QUESTIONS SERONT RÉDIGÉES SI BESOIN SUR LA FEUILLE DOUBLE DU CHAPITRE, EN RELEVANT BIEN LE NUMÉRO DE LA QUESTION CORRESPONDANTE.

Exercice n°1 : Comment déterminer un bilan carbone dans la cuisine ?

Lorsque l'on utilise une gazinière pour préparer un plat, une réaction de combustion est mise en œuvre, et du CO_2 est produit. Quelle quantité de dioxyde de carbone la cuisson de riz émet-elle ?

On donne les caractéristiques techniques d'une gazinière alimentée en gaz propane ou butane (**Doc.1**). Pour obtenir la cuisson de 100 g de riz, on utilise le brûleur rapide de type G30 alimenté en propane pendant une durée de 20 min.

▼ Doc.1 : Données constructeurs : Caractéristiques des brûleurs et injecteurs

Brûleur	Puissance thermique nominale (kW)	GAZ BUTANE-PROPANE – G30/G31 28/37 mbar					
		Diamètre injecteur 1/100 mm	By-pass mm 1/100	Puissance réduite (W)	Puissance g/h G30	Puissance g/h G31	
Auxiliaire	1	50	30	350	73	71	
Semi-Rapide	1.8	65	33	450	131	129	
Rapide	3	85	45	800	218	214	
Ultra-rapide (4)	3.2	91	85	1500	233	229	
Ultra-rapide (8)	3.5	94	85	1500	255	250	
Poissonnière	1.9	88	45	800	138	138	
Four	3.2	87	50	900	233	229	
Grand four	5.2	110	59	1300	378	372	
Grill	2.9	87	//	//	211	207	
Grand grill	4.0	100	//	//	291	288	

<u>Données</u>: $M_{C_3H_8} = 44,0 \ g. \ mol^{-1}$; $M_{CO_2} = 44,0 \ g. \ mol^{-1}$; $M_{H_2O} = 18,0 \ g. \ mol^{-1}$.

- Q1. Déterminer le nombre de moles de propane qui ont réagi lors de la cuisson.
- Q2. Remplir le tableau d'avancement suivant (s'aider de la Fiche méthode n°5 « Calculer l'énergie libérée lors d'une combustion », première flèche).

	$C_3H_{8(g)}$ +	$-0_{2(g)}$ —	\rightarrow $CO_{2(g)}$ +	$-H_2O_{(g)}$
État initial : $\mathbf{x} = 0$ Quantités introduites à $t = 0$ (la transformation n'a pas débuté)		Grand	0	0
État intermédiaire : x (au cours de la transformation)	$\left(n_{propane}\right)_{i}-x$	Grand		
État final $x = x_{max}$	= 0	Grand		

- Q3. En déduire les masses de dioxyde de carbone (CO_2) et d'eau (H_2O) produites lors de la cuisson.
- Q4. Combien de kilomètres pouvez-vous parcourir avec une voiture dont l'émission de CO_2 est de 140 $g.km^{-1}$ pour une quantité de dioxyde de carbone équivalente à la cuisson de votre riz ?
- Q5. Dans le cas de l'utilisation d'une plaque à induction, quelle serait la quantité de CO_2 produite?
- **Q6.** Comment déterminer la quantité de \mathcal{CO}_2 produite lors d'une combustion ?

Exercice n°2 : Véhicule Flex, acte I

Certains pays d'Amérique du Sud comme le Brésil sont pionniers dans l'emploi de l'éthanol (de formule brute C_2H_6O) comme biocarburant. On l'obtient là-bas à partir d'une plante à forte teneur en sucres : la canne à sucre.

Q7. Écrire l'équation de combustion complète de l'éthanol supposé gazeux avec le dioxygène (l'eau formée est liquide).

On considère un véhicule Flex, nom donné aux véhicules conçus pour fonctionner indifféremment au carburant super sans plomb ou à l'« E85 » (85 % d'éthanol + 15 % d'essence).

Le réservoir contient une masse m = 50 kg de E85.

On suppose que la réaction de combustion du biocarburant se fait avec de l'éthanol pur.

- Q8. Faire un tableau d'avancement.
- Q9. Montrer qu'une fois la combustion terminée, les quantités de matière formées en $H_2O_{(\ell)}$ et $CO_{2(g)}$ valent respectivement $3\ 261\ mol$ et $2\ 174\ mol$.
- Q10. En déduire la masse en CO_2 libérée par kilomètre, sachant que l'autonomie du véhicule est de $700\,km$.

<u>Données</u>: masse molaire de l'éthanol : $M_0 = 46 \ g.mol^{-1}$ masse molaire du CO_2 : $M_C = 44 \ g.mol^{-1}$

Q11. Quelle est l'énergie thermique libérée à 25 °C par la réaction de combustion des 50 kg d'éthanol ? <u>Donnée</u>: L'enthalpie de combustion à 25 °C de l'éthanol gazeux vaut $\Delta_C H^0 = -1,41 \cdot 10^6 J.mol^{-1}$

Exercice n°3: Véhicule Flex, acte II

On reprend l'exercice n°2. Le véhicule Flex fonctionne maintenant avec du carburant super sans plomb (principal constituant : l'heptane, un hydrocarbure de formule brute C_7H_{16}). Le réservoir contient maintenant une masse de $45\,kg$ d'heptane.

- Q12. Écrire l'équation de combustion complète de l'heptane supposé gazeux avec le dioxygène (l'eau formée est liquide).
- Q13. Pour simplifier, on supposera que le biocarburant est de l'heptane pur. Faire un tableau d'avancement. Calculer, une fois la combustion terminée, les quantités de matière formées en H_2O liquide et CO_2 gazeux.
- Q14. En déduire la masse en CO_2 libérée par kilomètre, sachant que l'autonomie du véhicule est maintenant de 800~km.

 Données: masse molaire de l'heptane : $100~g.mol^{-1}$ masse molaire du CO_2 : $44~g.mol^{-1}$
- Q15. Quelle est l'énergie thermique libérée à 25 °C par la réaction de combustion des 45 kg d'heptane ?

L'enthalpie de combustion de l'heptane gazeux à $25\,^{\circ}\mathrm{C}$ sous une pression de 1 bar vaut : $\Delta_{c}H^{0}=-4.85\cdot10^{6}\,J.\,mol^{-1}$

Q16. Un véhicule est dit écologique si son taux d'émission en CO_2/km est inférieur à 140 g/km. Le véhicule Flex étudié est-il un véhicule écologique en fonctionnant au bioéthanol ? À l'essence sans plomb ?